HIV-1 Protease Dimerization Dynamics Reveals a Transient Druggable Binding Pocket at the Interface

نویسندگان

  • Fabio Pietrucci
  • Attilio Vittorio Vargiu
  • Agata Kranjc
چکیده

The binding mechanism of HIV-1 protease monomers leading to the catalytically competent dimeric enzyme has been investigated by means of state-of-the-art atomistic simulations. The emerging picture allows a deeper understanding of experimental observations and reveals that water molecules trapped at the interface have an important role in slowing down the kinetics of the association process. Unexpectedly, a cryptic binding pocket is identified at the interface of the complex, corresponding to a partially bound dimer that lacks enzymatic function. The pocket has a transient nature with a lifetime longer than 1 μs, and it displays very favorable druggability features. Docking as well as MM-GBSA free-energy calculations further support the possibility to target the new binding site by means of inhibitors able to prevent the complete dimerization by capturing the inactive conformation. This discovery could open the way to the rational design of a new class of anti-HIV drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimerization of HIV-1 protease occurs through two steps relating to the mechanism of protease dimerization inhibition by darunavir.

Dimerization of HIV-1 protease (PR) subunits is an essential process for PR's acquisition of proteolytic activity, which plays a critical role in the maturation of HIV-1. Recombinant wild-type PR (PR(WT)) proved to dimerize, as examined with electrospray ionization mass spectrometry; however, two active site interface PR mutants (PR(T26A) and PR(R87K)) remained monomeric. On the other hand, two...

متن کامل

Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model.

Dimerization of HIV-I protease (HIV PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disrupting dimerization of the enzyme can inhibit its activity. We have calculated the relative binding free energies between different dimers of the HIV protease using molecular dynamics and a continuum model, which we call MM...

متن کامل

How Does Darunavir Prevent HIV-1 Protease Dimerization?

The drug Darunavir (DRV) is a potent inhibitor of HIV-1 protease (PR), a homodimeric essential enzyme of the AIDS virus. Recent experimental data suggest that DRV is able to prevent dimerization of HIV-1 PR, which, together with its high affinity for the mature enzyme, has been linked to the high genetic barrier to the development of viral resistance. The mechanism of dimerization inhibition an...

متن کامل

POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics

Analysis of macromolecular/small-molecule binding pockets can provide important insights into molecular recognition and receptor dynamics. Since its release in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. We here present POVME 2.0, which is an order of magnitude faster, has improved...

متن کامل

Unveiling a novel transient druggable pocket in BACE-1 through molecular simulations: Conformational analysis and binding mode of multisite inhibitors

The critical role of BACE-1 in the formation of neurotoxic ß-amyloid peptides in the brain makes it an attractive target for an efficacious treatment of Alzheimer's disease. However, the development of clinically useful BACE-1 inhibitors has proven to be extremely challenging. In this study we examine the binding mode of a novel potent inhibitor (compound 1, with IC50 80 nM) designed by synergi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015